<del id="owe0e"><dfn id="owe0e"></dfn></del>
  • <strike id="owe0e"></strike>
  • <fieldset id="owe0e"></fieldset>
  • <fieldset id="owe0e"></fieldset>
  • <fieldset id="owe0e"><menu id="owe0e"></menu></fieldset>
  • 技術文章

    Technical articles

    當前位置:首頁技術文章3D打印仿生功能器件實現微網格結構水下自清潔

    3D打印仿生功能器件實現微網格結構水下自清潔

    更新時間:2022-03-11點擊次數:1016

    金魚藻具有*的莖和葉的氣孔,其莖葉呈帶狀,寬度小于0.5 mm,有利于在日照和空氣有限的情況下有效進行光合作用(圖1a-c)。此外,金魚藻莖葉上的氣孔不僅能與周圍環境交換氣體進行呼吸,還能阻止外界水流的流入,這對金魚藻在水下的生存至關重要。
     

    111.png

    圖1. 一種仿生功能開放細胞。(a)金魚藻。(b)金魚藻表面覆蓋著*的氣孔。(c)金魚藻表面單氣孔示意圖。(d)利用PμSL 3D打印技術制備仿生開孔細胞。


    受此啟發,湖南大學王兆龍副教授、段輝高教授與中科院理化所董智超研究員,東南大學陳永平教授及上海交通大學鄭平院士合作,在《ACS Applied Materials & Interfaces》期刊上發表了題為“Underwater unidirectional cellular fluidics”的文章。該文章利用面投影微立體光刻技術(nanoArch S140,摩方精密)制備了原樣品。在經過處理后,形成了外表面超親水和內表面疏水的多孔仿生微結構(特征尺寸400微米),其不同接濕潤性產生的拉普拉斯力(圖2)保證了多孔仿生微結構的液體單向性能,這使液體被多孔仿生微結構阻擋在外,而在多孔仿生微結構內的液體和氣體能被排出。此外,多孔仿生微結構的幾何參數對其*的單向流態性能有很大的影響。該團隊也從理論上揭示了液體在3D打印多孔仿生微結構中的單向滲透機理。最終,還展示了多孔仿生微結構在水下厭氧化學反應的潛在應用。這種多孔仿生微結構為水下化學和微流體工程的潛在應用打開了一扇大門,如易燃材料的儲存、快速固液分離和厭氧化學反應。


    222.png

    圖3.仿生網格在水下的單向流態特性研究。(a)水穿透孔的示意圖。(b)不同情況下微孔的水接觸線。(c)微孔外水滴的拉普拉斯壓力。(d)仿生網格的單向滲透示意圖。(e)水下細胞流體性能測試模型。(f)兩個孔之間的距離對單向流體性能的影響。(g)孔寬對單向流態性能的影響。


    實驗結果表明,由于毛細力的作用(圖3a-ⅰ),水在孔的末端以較高的速度上升(圖3a-ⅱ)。而由于慣性作用,水將會在達到出口之后繼續上升(圖3a-ⅲ),同時,拉普拉斯壓力隨著孔口液滴彎月面曲率減小而逐漸增大。當拉普拉斯壓力達到最大時,如果水的動能使動態接觸角大于表面前進接觸角,水將會從孔中溢出(圖3a-c)。因此,鑒于內表面具備疏水性,水不能滲透到多孔仿生微結構內 (圖3d-ⅰ)。相反,由于另外一側是超親水表面,最大拉普拉斯力接近0,水將從多孔仿微結構疏水側滲透到親水側(圖3d-ⅱ),從而使得該仿生結構具有優異的單向液體穿透能力。


    多孔仿生微結構在水下的單向滲透性能由仿生網格結構失去單向性前的最大水深來表征(圖3e-ⅰ)。矩形孔在水下的單向流控性能最好,而三角形孔仿生膜的性能最差。此外,微結構厚度對仿生膜單向流控性能也有較大的影響,在100 μm至1000 μm范圍內,仿生膜的可持續水深隨膜厚的增加而增加。但隨著膜厚的增加,可承受水深將保持在75 mm左右。兩孔間距、孔寬對仿生膜水下單向流控性能的影響分別如圖3f、g所示。對于150 μm孔,多孔仿生微結構的可承受水深僅為10 mm左右。當孔徑為300 μm左右時,可承受水深隨著孔間距的增加迅速增加,達到 45 mm左右。之后,隨著兩孔間距的增加,可承受水深緩慢增加(圖3f)。


    333.png

    圖4. 水下仿生細胞內部的化學反應。(a)水下仿生細胞。(b)液滴滴在仿生細胞內表面時,仿生細胞的排水特性。(c)液滴滴在仿生細胞外表面時的拒水性能。(d)0.5mol?L-1NaHCO3與0.5mol?L-1H2SO4在仿生細胞內的化學反應。(e)0.5mol?L-1FeSO4與0.5mol?L-1NaOH在充滿CO2的仿生細胞內的化學反應。(f)我們的仿生細胞在水下的自清潔性能。


    基于仿生網格的優異液體單向通過特性,研究人員設計了微網格結構組成的封閉仿生細胞腔體。該仿生腔體具有疏水的內壁面及超親水的外壁面,從而使得外側的水在一定條件下無法穿過多孔仿生網格進入仿生細胞腔體內,從而形成水下密閉空間。該仿生細胞腔體被應用于微反應器(圖4a-c)。研究結果表明,由于網格微米孔的存在,產生的氣體可以自由出入仿生細胞(圖3a-ⅲ),并且可在水下形成無氧環境,進而可實現保護氣作用下的特殊化學反應。最重要的是,由于仿生網格*的液體單向特性,該仿生細胞在反應結束后會快速排出腔體內的所有液體,具有極為優異的水下自清潔特性。


    該項研究成果獲得國家自然科學基金委,湖南省優秀青年基金,廣東省重大專項及國防科工局民用航天項目等研究項目支持,以“Underwater unidirectional cellular fluidics”為題發表于期刊《ACS Applied Materials & Interfaces》,14,7 (2022) 9891–9898其中,湖南大學謝明鑄碩士生為第一作者。


    原文鏈接:https://doi.org/10.1021/acsami.1c24332

    作者:王兆龍

     

     

     

     

    主站蜘蛛池模板: 国产精品v片在线观看不卡| 欧美精品免费观看二区| 91精品国产自产在线观看永久| 精品久久人人做人人爽综合| 99re热视频这里只精品| 一本之道av不卡精品| 国产在线观看高清精品| 久久99国产精品久久久| 久久久精品人妻一区二区三区四| 精品久久久久久无码中文野结衣 | 人妻精品久久无码专区精东影业| 国精品无码A区一区二区| 欧美+亚洲+精品+三区| 国产成人精品日本亚洲| 日韩av无码久久精品免费| 亚洲精品tv久久久久| 久久狠狠一本精品综合网| 国产精品高清2021在线 | 国产精品无码日韩欧| 乱色精品无码一区二区国产盗| 中文字幕久久精品| 午夜一级日韩精品制服诱惑我们这边| 国产高清在线精品一本大道| 亚洲永久永久永久永久永久精品 | 69SEX久久精品国产麻豆| 国产成人精品手机在线观看| 亚洲国产精品成人午夜在线观看 | 一本一道久久精品综合| 国产成人精品免费视频大全麻豆| 久久久一本精品99久久精品66| 夜夜爽一区二区三区精品| 亚洲精品久久久www| 亚洲精品第一国产综合境外资源| 久久久久久久久久久免费精品| 精品人妻少妇嫩草AV无码专区| 国产精品国产AV片国产| 国产精品va久久久久久久| 国产精品一区三区| 久久久久国产精品三级网 | 精品国偷自产在线视频| 国产成人精品天堂|