<del id="owe0e"><dfn id="owe0e"></dfn></del>
  • <strike id="owe0e"></strike>
  • <fieldset id="owe0e"></fieldset>
  • <fieldset id="owe0e"></fieldset>
  • <fieldset id="owe0e"><menu id="owe0e"></menu></fieldset>
  • 技術文章

    Technical articles

    當前位置:首頁技術文章南科大葛锜/王榮團隊:光固化3D打印高精度高強度聚合物衍生SiOC陶瓷

    南科大葛锜/王榮團隊:光固化3D打印高精度高強度聚合物衍生SiOC陶瓷

    更新時間:2023-12-14點擊次數:944
    聚合物衍生陶瓷(Polymer derived ceramic, PDC)技術是通過在真空、惰性或反應性氣氛中對陶瓷前驅體(Preceramic polymer, PCP)進行熱解來制備碳化物、氮化物和碳氮化物等非氧化物陶瓷。PDC技術的優勢在于可以通過分子水平設計實現成分和微觀結構的可調節,制備工藝簡單且成本低廉。與傳統非氧化物陶瓷加工技術相比,其熱處理溫度較低,僅1000℃左右。由于PDC陶瓷具有優異的力學性能以及耐高溫和耐腐蝕能力,一體化成型的復雜形狀PDC零部件在航空航天、國防、電子、能源工業等領域有著巨大的應用潛力。



    由于PCP前驅體通常是透明含硅樹脂混合物,不含陶瓷顆粒,可通過3D打印技術制備各種高精度復雜三維結構,使其打印精度遠高于粉末基陶瓷漿料。在眾多3D打印技術中,光固化3D打印技術擁有更高成型精度,能打印更復雜精細的結構。盡管目前有各種關于3D打印PDC陶瓷的研究,但是其打印精度通常在100μm以上,仍未充分發揮光固化3D打印技術高精度的優勢,且陶瓷產率和力學性能通常較差,無法滿足實際應用需求。

    近日,南方科技大學葛锜/王榮團隊開發了一種具有超高打印精度和高陶瓷產率的PCP前驅體,采用摩方精密nanoArch®S130(精度:2 μm)和microArch®S240(精度:10 μm)3D打印設備,制備了尺寸從亞毫米到厘米的多種復雜三維結構,打印精度高達5μm。PCP前驅體在1100℃真空熱解后轉化為SiOC陶瓷,陶瓷產率高達56.9%。研究團隊設計了一種基于三重周期極小曲面(Triply Periodic Minimal Surface, TPMS)的I-WP結構(孔隙率80%),該結構SiOC陶瓷抗壓強度高達240 MPa,實際密度僅為0.367 g/cm3,對應比強度為6.54×105 N·m/kg。超高打印精度、優秀的比強度、高陶瓷產率以及復雜高精度零部件的可加工性能,這些特性可極大的促進PDC陶瓷在工程領域和惡劣環境中的應用。

    圖1中,a-c展示了3D打印聚合物衍生陶瓷流程。采用摩方高精度3D打印設備打印PCP前驅體,將打印所得生坯放入管式爐中,在真空條件下1100℃熱解即得到SiOC陶瓷。d展示了3D打印不同尺度陶瓷點陣結構。e-f展示了各種不同尺寸的陶瓷機械零部件,包括螺紋件、齒輪軸、渦輪和棘輪結構等。
     


    圖片


    圖1. 3D打印聚合物衍生SiOC陶瓷。a. DLP 光固化3D打印原理圖;b. 3D打印陶瓷前驅體生坯;c. 熱解后SiOC陶瓷點陣結構;d. 毫米到厘米尺度的陶瓷點陣結構;e. 3D打印各種陶瓷機械零件;f. 3D打印陶瓷棘輪。

    PCP前驅體采用聚硅氧烷SILRES®604、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPM)和丙烯酸芐酯(BA)為基本原料(圖2a),苯基雙氧化膦為光引發劑,蘇丹橙G為光吸收劑。TMSPM同時含有“C=C"雙鍵和“Si(OCH3)3"基團“Si(OCH3)3"基團可水解為硅烷醇,并與聚硅氧烷發生縮合反應,而“C=C"鍵賦予有機硅樹脂光反應活性(圖2b)。丙烯酸丁酯(BA)的加入一方面有效降低了體系粘度,另一方面提高了前驅體的光反應活性和生坯力學性能,使其適用于超高精度光固化3D打印(圖3)。
     


    圖片


    圖2. 材料和反應原理。a. 用于制備PCP前驅體的材料:聚硅氧烷SILRES®604、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPM)和丙烯酸芐酯(BA);b. PCP前驅體水解縮聚和光聚合反應原理。
     


    圖片


    圖3. 604-TMSPM和604-TMSPM-BA前驅體性質對比。a-b. 3D打印過程中繃膜對固化的604-TMSPM和604-TMSPM-BA前驅體作用效果示意圖;c. 前驅體的粘度隨剪切速率變化關系;d. 前驅體的光流變實驗。陰影區域表示紫外光開啟的時間范圍;e. 前驅體生坯的應力-應變曲線。
       
    為了展示PCP前驅體的打印精度,研究團隊打印了水平階梯測試面內成型精度和垂直階梯測量層間成型精度。如圖4所示,面內精度高達5μm,層間精度達9μm,可打印桿徑為8 μm的octet truss點陣結構。
     


    圖片


    圖4. 打印精度表征。a. 3D打印水平階梯SEM圖,用于測量面內打印精度;b. 水平階梯的局部放大圖,最小線寬為5 μm;c. 3D打印垂直階梯SEM圖,用于測量前驅體固化深度;d. 固化深度隨曝光能量函數關系;e-f. 3D打印桿徑為8 μm高精度octet truss點陣結構(熱解前)。

    采用該PCP前驅體可打印各種類型三重周期極小曲面(TPMS)結構。如圖5所示,打印Gyroid、Schwarz P和I-WP結構的總尺寸僅為0.73mm, I-WP結構的最小壁厚僅為5μm。將這些陶瓷結構與文獻報道數據進行對比,在打印精度、比強度、硬度和陶瓷產率等四方面均處于水平(圖6),其中打印精度為目前DLP/SLA技術打印陶瓷結構精度頂高水平。
     


    圖片


    圖5. 3D打印高精度SiOC陶瓷TPMS結構(整體尺寸為亞毫米級,特征尺寸為微米級)。a, d, g. Gyroid結構;b, e, h. Schwarz P結構;c, f, i. I-WP結構。
     


    圖片


    圖6. 3D 打印SiOC陶瓷的力學性能。a. 不同孔隙率TPMS結構的應力-應變曲線;b. 不同TPMS結構的壓縮強度比較;c. 文獻報道SiOC或SiC陶瓷結構壓縮強度與密度的Ashby圖;d. 在打印精度、比強度、硬度和陶瓷產率等四方面與文獻進行比較。

    相關研究成果以“Vat photopolymerization 3D printing of polymer-derived SiOC ceramics with high precision and high strength"為題發表在增材制造領域頂刊《Additive Manufacturing》上。本論文第一作者是博士生何向楠,共同一作兼共同通訊作者是研究助理教授王榮,通訊作者葛锜教授。該工作得到了國家自然科學基金委、廣東省科技廳和深圳市科創委的大力支持。
    主站蜘蛛池模板: 国产精品无码一区二区在线观一| 欧美精品播放| 精品无码久久久久久久动漫| 国内精品久久久久久99蜜桃| 国产精品一区二区av不卡| 91精品国产乱码久久久久久| 亚洲欧洲精品无码AV| 久久精品无码一区二区日韩AV | 精品久久久久中文字| 国产福利91精品一区二区| 亚洲欧洲精品成人久久曰影片 | 中文字幕亚洲精品| 国产亚洲精品岁国产微拍精品| 亚洲精品无码永久在线观看| 精品久久久久久久久久久久久久久 | 国产精品一区在线观看你懂的| 国产精品合集一区二区三区| 久久综合国产乱子伦精品免费| 色婷婷久久久SWAG精品| 精品日本一区二区三区在线观看| 亚洲精品国产成人99久久| 国产原创精品视频| 99re6在线视频精品免费| 久久99热只有频精品8| 亚洲AV无码成人精品区在线观看| 婷婷国产成人精品一区二| 久久久久久久亚洲精品 | 99久久精品免费| 亚洲精品免费观看| 久久久久免费精品国产| 国产亚洲精品一品区99热| 国产福利91精品一区二区三区 | 久久精品一区二区三区中文字幕| 国产三级精品三级在专区| 91午夜精品亚洲一区二区三区| 亚洲精品线在线观看| 久久精品中文字幕久久| 久久精品草草草| 欧美日韩在线亚洲国产精品| 欧美精品人爱c欧美精品| 青青青国产依人精品视频|